We return the analysis output files via an SFTP server. For differential gene expression analysis, the structure within your SFTP data folder will follow the general format below.
-Project ID
|--project_id_overview.pdf
|--1.fastq
|--sample1_S01_L001_R1_001.fastq.gz
|--sample1_S01_L001_R2_001.fastq.gz
|--etc.
|--2.sequencing.qc
|--multiqc_report.html
|--fastqc
|--sample1_S01_L001_R1_001_fastqc.html
|--sample1_S01_L001_R1_001_fastqc.zip
|--sample1_S01_L001_R2_001_fastqc.html
|--sample1_S01_L001_R2_001_fastqc.zip
|--etc.
|--multiqc_data
|--multiqc_citations.txt
|--multiqc_data.json
|--multiqc_fastqc.txt
|--multiqc_general_stats.txt
|--multiqc_software_versions.txt
|--multiqc_sources.txt
|--multiqc.log
|--3.alignment-and-counts
|--CPM.txt
|--deseq2_normalized_counts.txt
|--gene_count_matrix.csv
|--gene_fpkm.tsv
|--gene_tpm.tsv
|--STAR_QC_Errors.png
|--STAR_QC_Reads.png
|--STAR_Stats.csv
|--transcript_count_matrix.csv
|--transcript_fpkm.tsv
|--transcript_tpm.tsv
|--bams
|--sample1_STARAligned.sortedByCoord.out.bam
|--etc.
|--4.differential-expression
|--allDEG.heatmap.pdf
|--MDSplot.edgeR.pdf
|--PCAplot.deseq.pdf
|--PCAplot.noiseq.pdf
|--top50genes.edgeR.heatmap.pdf
|--top50genes.deseq.heatmap.pdf
|--clustering
|--clustered.heatmap.pdf
|--clusters-by-samples.pdf
|--genes-in-cluster.txt
|--sumSquares.pdf
|--group1_vs_group2 (one folder for each group comparison)
|--group1_vs_group2.deg.down.venn.minLFC0.png
|--group1_vs_group2.deg.up.venn.minLFC0.png
|--group1_vs_group2.deg.down.venn.minLFC1.png
|--group1_vs_group2.deg.up.venn.minLFC1.png
|--group1_vs_group2.deg.down.venn.minLFC2.png
|--group1_vs_group2.deg.up.venn.minLFC2.png
|--group1_vs_group2.deseq.MAplot.pdf
|--group1_vs_group2.deseq.volcano.png
|--group1_vs_group2.edgeR.MAplot.pdf
|--group1_vs_group2.noiseq.explot.pdf
|--group1_vs_group2.noiseq.MDplot.pdf
|--deseq-lists
|--group1_vs_group2.deg.all.deseq.txt
|--group1_vs_group2.deg.down.deseq.txt
|--group1_vs_group2.deg.up.deseq.txt
|--edgeR-lists
|--group1_vs_group2.deg.all.edgeR.txt
|--group1_vs_group2.deg.down.edgeR.txt
|--group1_vs_group2.deg.up.edgeR.txt
|--noiseq-lists
|--group1_vs_group2.deg.all.noiseq.txt
|--group1_vs_group2.deg.down.noiseq.txt
|--group1_vs_group2.deg.up.noiseq.txt
|--merged-deglists
|--group1_vs_group2.deg.down.minLFC0.csv
|--group1_vs_group2.deg.up.minLFC0.csv
|--group1_vs_group2.deg.down.minLFC1.csv
|--group1_vs_group2.deg.up.minLFC1.csv
|--group1_vs_group2.deg.down.minLFC2.csv
|--group1_vs_group2.deg.up.minLFC2.csv
|--5.functional-enrichment
|--group1_vs_group2 (one folder for each group comparison)
|--go-enrichment
|--go.cp.down.barplot.group1_vs_group2.pdf
|--go.cp.down.cnetplot.group1_vs_group2.pdf
|--go.cp.down.dotplot.group1_vs_group2.pdf
|--go.cp.down.emapplot.group1_vs_group2.pdf
|--go.cp.up.barplot.group1_vs_group2.pdf
|--go.cp.up.cnetplot.group1_vs_group2.pdf
|--go.cp.up.dotplot.group1_vs_group2.pdf
|--go.cp.up.emapplot.group1_vs_group2.pdf
|--go.group1_vs_group2.down.sig.csv
|--go.group1_vs_group2.up.sig.csv
|--kegg-pathways (only for organisms with KEGG pathway data available)
|--hsa#####.group1_vs_group2.png (one for each significantly enriched pathway)
|--kegg.group1_vs_group2.clusterProfiler.sig.csv
Next installment in differential gene expression deliverables: Sequence Processing and Alignment